Simple enzymatic procedure for l‐carnosine synthesis: whole‐cell biocatalysis and efficient biocatalyst recycling

نویسندگان

  • Jan Heyland
  • Nicolai Antweiler
  • Jochen Lutz
  • Tobias Heck
  • Birgit Geueke
  • Hans‐Peter E. Kohler
  • Lars M. Blank
  • Andreas Schmid
چکیده

β-Peptides and their derivates are usually stable to proteolysis and have an increased half-life compared with α-peptides. Recently, β-aminopeptidases were described as a new enzyme class that enabled the enzymatic degradation and formation of β-peptides. As an alternative to the existing chemical synthesis routes, the aim of the present work was to develop a whole-cell biocatalyst for the synthesis and production of β-peptides using this enzymatic activity. For the optimization of the reaction system we chose the commercially relevant β,α-dipeptide L-carnosine (β-alanine-L-histidine) as model product. We were able to show that different recombinant yeast and bacteria strains, which overexpress a β-peptidase, could be used directly as whole-cell biocatalysts for the synthesis of L-carnosine. By optimizing relevant reaction conditions for the best-performing recombinant Escherichia coli strain, such as pH and substrate concentrations, we obtained high l-carnosine yields of up to 71%. Long-time as well as biocatalyst recycling experiments indicated a high stability of the developed biocatalyst for at least five repeated batches. Application of the recombinant E. coli in a fed-batch process enabled the accumulation of l-carnosine to a concentration of 3.7 g l(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production

As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and rec...

متن کامل

Engineered baker’s yeast as whole-cell biocatalyst for one-pot stereo-selective conversion of amines to alcohols

BACKGROUND One-pot multi-step biocatalysis is advantageous over step-by-step synthesis as it reduces the number of process operation units, leading to significant process intensification. Whole-cell biocatalysis with metabolically active cells is especially valuable since all enzymes can be co-expressed in the cell whose metabolism can be exploited for supply of co-substrates and co-factors. ...

متن کامل

Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.

(3S)-Acetoin and (2S,3S)-2,3-butanediol are important platform chemicals widely applied in the asymmetric synthesis of valuable chiral chemicals. However, their production by fermentative methods is difficult to perform. This study aimed to develop a whole-cell biocatalysis strategy for the production of (3S)-acetoin and (2S,3S)-2,3-butanediol from meso-2,3-butanediol. First, E. coli co-express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010